Analytic nilpotent centers as limits of nondegenerate centers revisited

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Reducibility of Nondegenerate Centers: Cherkas Systems

In this paper we study the center problem for polynomial differential systems and we prove that any center of an analytic differential system is analytically reducible. We also study the centers for the Cherkas polynomial differential systems ẋ = y, ẏ = P0(x) + P1(x)y + P2(x)y , where Pi(x) are polynomials of degree n, P0(0) = 0 and P ′ 0(0) < 0. Computing the focal values we find the center co...

متن کامل

Algorithmic Derivation of Nilpotent Centers

To characterize when a nilpotent singular point of an analytic differential system is a center is of particular interest, first for the problem of distinguishing between a focus and a center, and after for studying the bifurcation of limit cycles from it or from its period annulus. We give an effective algorithm in the search of necessary conditions for detecting nilpotent centers based in rece...

متن کامل

Analytic centers and repelling inequalities

The new concepts of repelling inequalities, repelling paths, and prime analytic centers are introduced. A repelling path is a generalization of the analytic central path for linear programming, and we show that this path has a unique limit. Furthermore, this limit is the prime analytic center if the set of repelling inequalities contains only those constraints that ‘‘shape’’ the polytope. Becau...

متن کامل

Convex Separation From Optimization Using Analytic Centers

Let K be a convex subset of Rn containing a ball of finite radius centered at c0 and contained in a ball of finite radius R. We give an oracle-polynomial-time algorithm for the weak separation problem for K given an oracle for the weak optimization problem for K. This is done by reducing the weak separation problem for K to the convex feasibility (nonemptiness) problem for a set K ′, and then b...

متن کامل

Uniform isochronous cubic and quartic centers: Revisited

In this paper we completed the classification of the phase portraits in the Poincaré disc of uniform isochronous cubic and quartic centers previously studied by several authors. There are three and fourteen different topological phase portraits for the uniform isochronous cubic and quartic centers respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2016

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2016.04.046